题目内容
1.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是同一平面内的三个向量,其中$\overrightarrow{a}$=(1,2).(1)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐标;
(2)若$\overrightarrow{b}$=(2,2),且m$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$垂直,求实数m.
分析 (1)设$\overrightarrow{c}=(x,y)$,由|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,知$\left\{\begin{array}{l}{y-2x=0}\\{{x}^{2}+{y}^{2}=20}\end{array}\right.$,由此能求出$\overrightarrow{c}$的坐标;
(2)由已知向量的坐标求出m$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$的坐标,再由m$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$垂直列式求得实数m.
解答 解:(1)设$\overrightarrow{c}=(x,y)$,由|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,
知$\left\{\begin{array}{l}{y-2x=0}\\{{x}^{2}+{y}^{2}=20}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=-4}\end{array}\right.$,
故$\overrightarrow{c}$=(2,4)或$\overrightarrow{c}$=(-2,-4);
(2)由$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,2),得
m$\overrightarrow{a}$-$\overrightarrow{b}$=m(1,2)-(2,2)=(m-2,2m-2),
$\overrightarrow{a}$-m$\overrightarrow{b}$=(1,2)-m(2,2)=(1-2m,2-2m).
由m$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$垂直,得:(m-2)(1-2m)+(2m-2)(2-2m)=0,解得:m=$\frac{2}{3}$或m=$\frac{3}{2}$.
点评 本题考查平面向量的坐标运算,考查数量积判断两个平面向量垂直,是基础题.