题目内容
【题目】下列函数既是奇函数,又在上单调递增的是
A. B.
C. D.
【答案】C
【解析】
根据题意,依次分析选项中函数的奇偶性以及上的单调性,综合即可得答案.
根据题意,依次分析选项:
对于A,f(x)=|sinx|,为偶函数,不符合题意;
对于B,f(x)=ln,其定义域为(﹣e,e),有f(﹣x)=lnlnf(x),为奇函数,
设t1,在(﹣e,e)上为减函数,而y=lnt为增函数,
则f(x)=ln在(﹣e,e)上为减函数,不符合题意;
对于C,f(x)(ex﹣e﹣x),有f(﹣x)(e﹣x﹣ex)(ex﹣e﹣x)=﹣f(x),为奇函数,且f′(x)(ex+e﹣x)>0,在R上为增函数,符合题意;
对于D,f(x)=ln(x),其定义域为R,
f(﹣x)=ln(x)=﹣ln(x)=﹣f(x),为奇函数,
设tx,y=lnt,t在R上为减函数,而y=lnt为增函数,
则f(x)=ln(x)在R上为减函数,不符合题意;
故选:C.
练习册系列答案
相关题目