题目内容
【题目】某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀, 授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等级相互独立.
(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.
【答案】
【解析】
(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.
则事件A、B、C是相互独立事件,事件与事件E是对立事件,于是
P(E)=1-P()=1-(1-)(1-)(1-)=.
(2)ξ的所有可能取值为30,40,50,60.
P(ξ=30)=P()=(1-)(1-)(1-)=,
P(ξ=40)=P(A)+P(B)+P(C)=,
P(ξ=50)=P(AB)+P(AC)+P(BC)=,
P(ξ=60)=P(ABC)=.
所以ξ的分布列为
ξ | 30 | 40 | 50 | 60 |
P |
∴E(ξ)=30×+40×+50×+60×=.
练习册系列答案
相关题目
【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式;
(2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 | |||||||
频数 |
以天的各需求量的频率作为各需求量发生的概率.
若花店一天购进枝玫瑰花, 表示当天的利润(单位:元),求的分布列, 数学期望及方差;
若花店一天购进枝或枝玫瑰花,你认为应购进枝还是枝?请说明理由.