题目内容

16.已知函数f(x)=loga[(a-1)x-1].
(1)求函数f(x)的定义域;
(2)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.

分析 (1)由真数大于零可求出答案;
(2)利用函数的单调性求出f(x)的最小值,只需让f(x)的最小值大于0即可.

解答 解:(1)由f(x)=loga[(a-1)x-1]有意义得:
      (a-1)x-1>0,且a>0,a≠1
当a>1时,x>$\frac{1}{a-1}$;
当0<a<1时,x<$\frac{1}{a-1}$.
∴当a>1时,f(x)的定义域为($\frac{1}{a-1}$,+∞);
 当0<a<1时,f(x)的定义域为(-∞,$\frac{1}{a-1}$).
(2)令g(x)=(a-1)x-1,
则当a>1时,g(x)=(a-1)x-1在[2,+∞)上是增函数,
∴f(x)=loga[(a-1)x-1]在[2,+∞)上是增函数.
当0<a<1时,g(x)=(a-1)x-1在[2,+∞)上是减函数,
∴f(x)=loga[(a-1)x-1]在[2,+∞)上是增函数.
综上所述,f(x)=loga[(a-1)x-1]在[2,+∞)上是增函数.
∴fmin(x)=f(2)=loga(2a-3).
∵对任意x∈[2,+∞)恒有f(x)>0,
∴fmin(x)>0,
即loga(2a-3)>0.
①当a>1时,2a-3>1,解得a>2.
②0<a<1时,0<2a-3<1解得$\frac{3}{2}$<a<2(舍).
a的取值范围是(2,+∞).

点评 本题主要考查了对数函数的定义域、复合函数的单调性及分类讨论思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网