题目内容
(2013•未央区三模)若集合A={x|
≤0},B={x|x2<2x},则A∩B=( )
x |
x-1 |
分析:分别求解分式不等式和一元二次不等式化简集合A与集合B,然后直接利用交集运算求解.
解答:解:由
≤0,得
,解得0≤x<1.
所以{x|
≤0}={x|0≤x<1},
又B={x|x2<2x}={x|0<x<2},
所以A∩B={x|0≤x<1}∩{x|0<x<2}={x|0<x<1}.
故选A.
x |
x-1 |
|
所以{x|
x |
x-1 |
又B={x|x2<2x}={x|0<x<2},
所以A∩B={x|0≤x<1}∩{x|0<x<2}={x|0<x<1}.
故选A.
点评:本题考查了交集及其运算,考查了分式不等式及二次不等式的解法,是基础的运算题.
练习册系列答案
相关题目