题目内容

【题目】已知各项均为正数的等比数列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分别为等差数列{bn}的第3项和第5项,求数列{bn}的通项公式.

【答案】
(1)解:由已知得 ,∴q2=4,

又q>0,∴q=2.


(2)解:由(1)可得 .∴b3=a3=8,b5=a5=32.

设等差数列{bn}的公差为d,则

∴an=8+(n﹣3)×12=12n﹣28.


【解析】(1)由已知得 解可得q值;(2)由(1)可得b3=a3=8,b5=a5=32,可求公差d,进而可得其通项公式.
【考点精析】认真审题,首先需要了解等差数列的通项公式(及其变式)(通项公式:),还要掌握等比数列的通项公式(及其变式)(通项公式:)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网