题目内容

5.已知等比数列{an}的前n项和为Sn,a2=$\frac{1}{4}$,且S1,S2,S3+$\frac{1}{8}$成等差数列;公差不为0的等差数列{bn}的前n项和Tn满足$\frac{{T}_{n}}{n}$=c•bn+1(其中c为常数),且b2=24.
(1)求数列{an}、{bn}的通顶公式;
(2)记数列{$\frac{1}{{T}_{n}}$}的前n项和为Q,比较Q与$\frac{{S}_{n}}{2}$的大小关系.

分析 (1)利用S1,S2,S3+$\frac{1}{8}$成等差数列,可得2S2=S1+S3+$\frac{1}{8}$,又a2=$\frac{1}{4}$,从而可得an=$(\frac{1}{2})^{n}$;利用$\left\{\begin{array}{l}{{T}_{1}=c•{b}_{2}}\\{{T}_{2}=2c•{b}_{3}}\end{array}\right.$,及b2=24,可推出bn=12+12(n-1)=12n;
(2)由(1)知Sn=$1-(\frac{1}{2})^{n}$>$\frac{1}{2}$推出$\frac{{S}_{n}}{2}$>$\frac{1}{4}$,通过裂项可知$\frac{1}{{T}_{n}}=\frac{1}{6}(\frac{1}{n}-\frac{1}{n+1})$,从而并项相加可知Q$<\frac{1}{6}$,得到$\frac{{S}_{n}}{2}$>Q.

解答 解:(1)已知数列{an}的公比为q,因为S1,S2,S3+$\frac{1}{8}$成等差数列,
所以2S2=S1+S3+$\frac{1}{8}$,即${a}_{2}={a}_{3}+\frac{1}{8}$,
又a2=$\frac{1}{4}$,所以${a}_{3}={a}_{2}-\frac{1}{8}=\frac{1}{4}-\frac{1}{8}=\frac{1}{8}$,
所以q=$\frac{{a}_{3}}{{a}_{2}}$=$\frac{\frac{1}{8}}{\frac{1}{4}}$=$\frac{1}{2}$,从而a1=$\frac{{a}_{2}}{q}$=$\frac{\frac{1}{4}}{\frac{1}{2}}$=$\frac{1}{2}$,
所以${a}_{n}=\frac{1}{2}•(\frac{1}{2})^{n-1}$=$(\frac{1}{2})^{n}$;
∵$\frac{{T}_{n}}{n}$=c•bn+1(其中c为常数),∴$\left\{\begin{array}{l}{{T}_{1}=c•{b}_{2}}\\{{T}_{2}=2c•{b}_{3}}\end{array}\right.$,
又数列{bn}的公差d不为零,
所以$\left\{\begin{array}{l}{{b}_{2}-d=c•{b}_{2}}\\{2{b}_{2}-d=2c•({b}_{2}+d)}\end{array}\right.$,
又∵b2=24,∴$\left\{\begin{array}{l}{24-d=24c}\\{2×24-d=2c(24+d)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{c=\frac{1}{2}}\\{d=12}\end{array}\right.$或$\left\{\begin{array}{l}{c=1}\\{d=0}\end{array}\right.$(舍),
从而b1=b2-d=24-12=12,
所以bn=12+12(n-1)=12n;
(2)由(1)知Sn=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$=$1-(\frac{1}{2})^{n}$>$\frac{1}{2}$,所以$\frac{{S}_{n}}{2}$>$\frac{1}{4}$,
∵${T}_{n}=12n+\frac{n(n-1)}{2}×12$=6n(n+1),
∴$\frac{1}{{T}_{n}}=\frac{1}{6}(\frac{1}{n}-\frac{1}{n+1})$,
从而Q=$\frac{1}{{T}_{1}}+\frac{1}{{T}_{2}}+…+\frac{1}{{T}_{n}}$
=$\frac{1}{6}$[($1-\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{n}-\frac{1}{n+1}$)]
=$\frac{1}{6}(1-\frac{1}{n+1})$$<\frac{1}{6}$,
所以$\frac{{S}_{n}}{2}$>Q.

点评 本题考查等差、等比数列,挖掘隐含条件、递推数列是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网