题目内容

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\left\{\begin{array}{l}{2{a}_{n}+2n-2,n为奇数}\\{-{a}_{n}-n,n为偶数}\end{array}\right.$数列{an}的前n项和为Sn,bn=a2n,其中n∈N*
(Ⅰ)试求a2,a3的值并证明数列{bn}为等比数列;
(Ⅱ)设cn=bn+a2n+1求数列$\left\{{\frac{1}{{{c_n}{c_{n+1}}}}}\right\}$的前n项和.

分析 (I)a1=$\frac{1}{2}$,an+1=$\left\{\begin{array}{l}{2{a}_{n}+2n-2,n为奇数}\\{-{a}_{n}-n,n为偶数}\end{array}\right.$,分别取n=1,n=2,可得a2,a3.利用递推式可得bn+1=a2n+2=2a2n+1+4n,又a2n+1=-a2n-2n,可得bn+1=-2bn,利用等比数列的定义即可证明.
(II)由(I)可得:a2n+1=-a2n-2n,bn=a2n,可得cn=a2n+(-a2n-2n)=-2n.于是$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.利用“裂项求和”即可得出.

解答 (I)证明:∵a1=$\frac{1}{2}$,an+1=$\left\{\begin{array}{l}{2{a}_{n}+2n-2,n为奇数}\\{-{a}_{n}-n,n为偶数}\end{array}\right.$,
∴a2=2a1+2-2=1,a3=-a2-2=-3.
bn+1=a2n+2=2a2n+1+2(2n+1)-2=2a2n+1+4n,
又a2n+1=-a2n-2n,
∴bn+1=2(-a2n-2n)+4n=-2a2n=-2bn
b1=a2=1,
∴数列{bn}为等比数列,首项为1,公比为-2;
(II)解:由(I)可得:a2n+1=-a2n-2n,bn=a2n
cn=bn+a2n+1=a2n+(-a2n-2n)=-2n.cn+1=-2(n+1).
∴$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{-2n•[-2(n+1)]}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴数列$\left\{{\frac{1}{{{c_n}{c_{n+1}}}}}\right\}$的前n项和=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}(1-\frac{1}{n+1})$
=$\frac{n}{4(n+1)}$.

点评 本题考查了递推式、等比数列的定义及其通项公式、“裂项求和”,考查了变形能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网