题目内容
11.甲、乙两人各射击1次,击中目标的概率分别是$\frac{2}{3}$和$\frac{3}{4}$,假设两人射击目标是否击中相互之间没有影响,每人各次射击是否击中目标也没有影响.则两人各射击4次,甲恰好有2次击中目标且乙恰好有3次击中目标的概率为$\frac{1}{8}$.分析 先利用n次独立重复试验中恰好发生k次的概率公式,分别求得甲恰好有2次击中目标的概率、乙恰好有3次击中目标的概率,再把这两个概率值相乘,即得所求.
解答 解:甲恰好有2次击中目标的概率为${C}_{4}^{2}$•${(\frac{2}{3})}^{2}$•${(\frac{1}{3})}^{2}$=$\frac{8}{27}$,
乙恰好有3次击中目标的概率为${C}_{4}^{3}$•${(\frac{3}{4})}^{3}$•$\frac{1}{4}$=$\frac{27}{64}$,
故甲恰好有2次击中目标且乙恰好有3次击中目标的概率为 $\frac{8}{27}$×$\frac{27}{64}$=$\frac{1}{8}$,
故答案为:$\frac{1}{8}$.
点评 本题主要考查n次独立重复试验中恰好发生k次的概率公式,相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.
练习册系列答案
相关题目
1.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( )
A. | $\frac{7}{15}$ | B. | $\frac{8}{15}$ | C. | $\frac{3}{5}$ | D. | $\frac{7}{10}$ |
6.调查在2~3级风的海上航行中男、女乘客的晕船情况,结果如表所示:
根据此资料,你是否认为在2~3级风的海上航行中男性比女性更容易晕船?
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
晕船 | 不晕船 | 合计 | |
男性 | 12 | 25 | 37 |
女性 | 10 | 24 | 34 |
合计 | 22 | 49 | 71 |
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k) | … | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 | |
k | … | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 | … |
16.若方程$\frac{x^2}{|m|-2}+\frac{y^2}{5-m}=1$表示双曲线,则m的取值范围是( )
A. | -2<m<2 | B. | m>5 | C. | -2<m<2或m>5 | D. | 全体实数 |
3.已知n∈N*,且n>1,三个数ln$\frac{n+1}{n}$、$\frac{1}{n+1}$、$\frac{1}{n}$的大小关系是( )
A. | $\frac{1}{n}$>ln$\frac{n+1}{n}$>$\frac{1}{n+1}$ | B. | ln$\frac{n+1}{n}$>$\frac{1}{n}$>$\frac{1}{n+1}$ | C. | $\frac{1}{n}$>$\frac{1}{n+1}$>ln$\frac{n+1}{n}$ | D. | $\frac{1}{n+1}$>$\frac{1}{n}$>ln$\frac{n+1}{n}$ |