题目内容

【题目】已知为抛物线上一个动点, 为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是

A. B. C. D.

【答案】A

【解析】

由已知得,设圆心为,因为圆 抛物线上一动点, 为抛物线的焦点的最短距离为 ,则当的直线经过点时, 最小,则故选A.
【方法点晴】本题主要考查抛物线的标准方程和抛物线的简单性质及利用抛物线的定义求最值,属于难题.与抛物线的定义有关的最值问题常常实现由点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线的距化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将拋物线上的点到焦点的距离转化为到准线的距离,利用“点与直线上所有点的连线中垂线段最短”原理解决.本题是将到准线的距离转化为到焦点的距离,再根据几何意义解题的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网