题目内容
【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.
【答案】(1);(2).
【解析】试题分析:(1)由题意知,,解此不等式组得出函数g(x)的定义域.
(2)等式g(x)≤0,即 f(x﹣1)≤﹣f(3﹣2x)=f(2x﹣3),有,解此不等式组,
可得结果.
解:(1)∵数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).
∴,∴<x<,函数g(x)的定义域(,).
(2)∵f(x)是奇函数且在定义域内单调递减,不等式g(x)≤0,
∴f(x﹣1)≤﹣f(3﹣2x)=f(2x﹣3),∴,∴<x≤2,
故不等式g(x)≤0的解集是 (,2].
练习册系列答案
相关题目
【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如下表:
编号 成绩 | 1 | 2 | 3 | 4 | 5 |
物理() | 90 | 85 | 74 | 68 | 63 |
数学() | 130 | 125 | 110 | 95 | 90 |
求数学成绩关于物理成绩的线性回归方程(精确到
若某位学生的物理成绩为80分,预测他的数学成绩;