题目内容
【题目】已知函数,图象上两相邻对称轴之间的距离为;_______________;
(Ⅰ)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;
(Ⅱ)若动直线与和的图象分别交于、两点,求线段长度的最大值及此时的值.
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】(Ⅰ)选①或②或③,;(Ⅱ)当或时,线段的长取到最大值.
【解析】
(Ⅰ)先根据题中信息求出函数的最小正周期,进而得出.
选①,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;
选②,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;
选③,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;
(Ⅱ)令,利用三角恒等变换思想化简函数的解析式,利用正弦型函数的基本性质求出在上的最大值和最小值,由此可求得线段长度的最大值及此时的值.
(Ⅰ)由于函数图象上两相邻对称轴之间的距离为,则该函数的最小正周期为,,此时.
若选①,则函数的一条对称轴,则,
得,,当时,,
此时,;
若选②,则函数的一个对称中心,则,
得,,当时,,
此时,;
若选③,则函数的图象过点,则,
得,,,
,解得,此时,.
综上所述,;
(Ⅱ)令,,
,,当或时,即当或时,
线段的长取到最大值.
练习册系列答案
相关题目