题目内容
【题目】已知定义域为的函数(,)
(1)设,求的单调区间;
(2)设为导数,
(i)证明:当,时,;
(ii)设关于的方程的根为,求证:
【答案】(1)当为奇数时的增区间为,减区间为;当为偶数时的增区间为及,减区间为。
(2)(i)证明见解析,(ii)证明见解析。
【解析】
(1)对,求导可得,分当为大于1的奇数,和为偶数时两种情况讨论可得的单调区间;
(2)(i)设,,求导得,根据研究即可得到所证结论;
(ii),原方程化为解得,因为,所以;作差得,,由(i)知,可得,所以,即可得证.
(1),
当,时
即
(a)当为大于1的奇数时,是偶数,,,
当时,,当时
故的增区间为,减区间为
当为偶数时,是奇数,由于,所以
当或时,,当时
故的增区间为及,减区间为
综上,当为奇数时的增区间为,减区间为,
当为偶数时的增区间为及,减区间为,
(2)(i)证明:设,,则,
因为,,故在是增函数,
从而,由于,
所以,
所以在是增函数,,即
(ii),原方程化为
解得,因为,所以;
作差得,,
由(i)知,当,时,,
令,,故有,所以,,
综上,
练习册系列答案
相关题目
【题目】每年春节,各地的餐馆都出现了用餐需预定的现象,致使一些人在没有预定的情况下难以找到用餐的餐馆,针对这种现象,专家对人们的用餐地点及性别作出调查,得到的情况如下表所示:
在家用餐 | 在餐馆用餐 | 总计 | |
男性 | 30 | ||
女性 | 40 | ||
总计 | 50 | 100 |
(1)完成上述列联表;
(2)根据表中的数据,试通过计算判断是否有的把握说明用餐地点与性别有关?
参考公式及数据:,其中.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |