题目内容
【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n∈N*)
(Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an;
(Ⅱ)求数列{n2an}的前n项和Tn;
(Ⅲ)对任意n∈N*,使得 恒成立,求实数λ的最小值.
【答案】(Ⅰ)(Ⅱ) (Ⅲ)
【解析】
(Ⅰ)要证明数列{nan}是等比数列,应先求其通项公式,然后用等比数列定义证明即可。由等比数列通向公式可求得数列{nan}的通项公式,进而可求数列{an}的通项an;(Ⅱ)要求数列{n2an}的前n项和Tn,应根据(Ⅰ)的结果求其通项公式,由通项公式的特点可用错位相减法求数列从第二项到第n项的和,再加第一项可得结果;(Ⅲ) 根据(Ⅰ)的结果,不等式可变为,利用基本不等式,可求得不等式右边的最大值为。可求实数λ的最小值为。
(Ⅰ)[证明]:由a1+2a2+3a3+…+nan=,得a1+2a2+3a3+…+(n﹣1)an﹣1=(n≥2),
①﹣②:,即(n≥2),∴当n≥2时,数列{nan}是等比数列,
又a1=1,a1+2a2+3a3+…+nan=,得a2=1,则2a2=2,∴,
∴(n≥2),∴;
(Ⅱ)解:由(Ⅰ)可知,
∴Tn=1+2×2×30+2×3×31+2×4×32+…+2n×3n﹣2,则,
两式作差得:,得:;
(Ⅲ)解:由≤(n+6)λ,得≤(n+6)λ,
即对任意n∈N*恒成立.
当n=2或n=3时n+有最小值为5,有最大值为,故有λ≥,∴实数λ的最小值为.
练习册系列答案
相关题目