题目内容

【题目】以下是我们常见的空间几何体.

1 2 3 4 5 6 7 8 9)(10

11

1)以上几何体中哪些是棱柱?

2)一个几何体为棱柱的充要条件是什么?

3)如何求以上几何体的表面积?

【答案】1)(2)(4)(6)(7).

2)两个面互相平行,且多面体的顶点都在这两个面上,其余各面都是平行四边形.

3)各个面的面积之和.

【解析】

1)根据棱柱的定义进行筛选,即可得出结论;

2)根据棱柱侧棱平行且相等,顶点都在平行平面上,即可得出结论;

3)根据表面积的定义,即可求解.

1)根据棱柱的定义:有两个面互相平行,其余各面都是四边形,

并且每相邻两个四边形的公共边都互相平行,由这些面所围成的

多面体为棱柱.可知(1)(2)(4)(6)(7)为棱柱;

2)一个几何体为棱柱的充要条件是:两个面互相平行,

且多面体的顶点都在这两个面上,其余各面都是平行四边形.

3)求解几何体的表面积即求各个面的面积之和.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网