题目内容

13.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若$\overrightarrow{OE}=\frac{1}{2}(\overrightarrow{OF}+\overrightarrow{OP})$,则双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

分析 由题设知|EF|=b,|PF|=2b,|PF′|=2a,过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,
据此可求出P点的横坐标,后在Rt△PDF中根据勾股定理建立等式,由此能求出双曲线的离心率.

解答 解:∵|OF|=c,|OE|=a,OE⊥EF
∴|EF|=b,
∵$\overrightarrow{OE}=\frac{1}{2}(\overrightarrow{OF}+\overrightarrow{OP})$,
∴E为PF的中点,|PF|=2b,
又∵O为FF′的中点,
∴PF′∥EO,
∴|PF′|=2a,
∵抛物线方程为y2=4cx,
∴抛物线的焦点坐标为(c,0),
即抛物线和双曲线右支焦点相同,
过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,
∴PD=PF′=2a,
∴P点横坐标为2a-c,设P(x,y),
在Rt△PDF中,PD2+DF2=PF2,即4a2+y2=4b2,4a2+4c(2a-c)=4(c2-b2),
解得e=$\frac{1+\sqrt{5}}{2}$
故答案为:$\frac{1+\sqrt{5}}{2}$.

点评 本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,同时考查双曲线的定义及性质,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网