题目内容
【题目】在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:
(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;
(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).
【答案】
(1)解:∵120+ =125,解得x=3.
∵ =124,解得y=4
(2)解:因为一分钟内跳绳次数不低于115且不超过125的学生中,男生只有1人,女生只有4人,
所以男生被选上的概率为 ,女生被选上的概率为 ,X可能取值为0,1,2,
∴P(X=0)= = ,P(X=1)= = ,P(X=2)= = .
∴X的分布列为:
X | 0 | 1 | 2 |
P |
∴数学期望E(X)=0× +1× +2× =
【解析】(1)利用120+ =125,解得x.利用平均数的计算公式可得y.(2)因为一分钟内跳绳次数不低于115且不超过125的学生中,男生只有1人,女生只有4人.所以男生被选上的概率为 ,女生被选上的概率为 ,X可能取值为0,1,2,利用相互独立与互斥事件的概率计算公式即可得出.
【考点精析】掌握茎叶图是解答本题的根本,需要知道茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表,现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
一年级 | 二年级 | 三年级 | |
男同学 | |||
女同学 |
(1)用表中字母列举出所有可能的结果;
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
【题目】某地小吃“全羊汤”2008年被中国中医学会营养膳食协会评为“中华名吃”,2010年12月被纳入市级非物质文化遗产名录,打造地方名片.当初向各地作广告推广,对销售收益产生额积极的影响.某年度在若干地区各投入4万元广告费用后,将各地该年度的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图,计算图中各小长方形的宽度;
(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值;(以各组区间中点值代表改组的取值)
(3)又在某一地区测的另外一些数据,并整理的得到下表:
广告投入(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益(单位:百万元) | 2 | 3 | 2 | 7 |
请将(2)的结果填入空白栏,表中的数据之间存在线性相关关系.计算,并预测年度广告约投入多少万元时,年销售收益达到千万元?(结果精确达到0.1)
参考公式:.