题目内容
【题目】设全集U=R,集合A={x|7﹣6x≤0},集合B={x|y=lg(x+2)},则(UA)∩B等于( )
A.(﹣2, )
B.( ,+∞)
C.[﹣2, )
D.(﹣2,﹣ )
【答案】A
【解析】解:全集U=R,集合A={x|7﹣6x≤0}={x|x≥ }=[ ,+∞),
集合B={x|y=lg(x+2)}={x|x+2>0}={x|x>﹣2}=(﹣2,+∞),
∴UA=(﹣∞, ),
∴(UA)∩B=(﹣2, ).
故选:A.
【考点精析】解答此题的关键在于理解交、并、补集的混合运算的相关知识,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
练习册系列答案
相关题目
【题目】某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:
分组 | 等待时间(分钟) | 人数 |
第一组 | [0,5) | 10 |
第二组 | [5,10) | a |
第三组 | [10,15) | 30 |
第四组 | [15,20) | 10 |
(1)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(2)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.