题目内容

【题目】已知数列{an}满足an+1﹣an=2,a1=﹣5,则|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

【答案】C
【解析】解:∵an+1﹣an=2,a1=﹣5,∴数列{an}是公差为2的等差数列. ∴an=﹣5+2(n﹣1)=2n﹣7.
数列{an}的前n项和Sn= =n2﹣6n.
令an=2n﹣7≥0,解得
∴n≤3时,|an|=﹣an
n≥4时,|an|=an
则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.
故选:C.
【考点精析】通过灵活运用数列的前n项和,掌握数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网