题目内容

11.如果向量$\overrightarrow{{a}_{1}}$=$(\begin{array}{l}{{a}_{1}}\\{{b}_{1}}\\{{c}_{1}}\end{array})$,$\overrightarrow{{a}_{2}}$=$(\begin{array}{l}{{a}_{2}}\\{{b}_{2}}\\{{c}_{2}}\end{array})$线性相关,则$|\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}|$=0.

分析 通过向量$\overrightarrow{{a}_{1}}$=$(\begin{array}{l}{{a}_{1}}\\{{b}_{1}}\\{{c}_{1}}\end{array})$,$\overrightarrow{{a}_{2}}$=$(\begin{array}{l}{{a}_{2}}\\{{b}_{2}}\\{{c}_{2}}\end{array})$线性相关可知矩阵$[\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}]$中第一行正好是第二行的-$\frac{{k}_{2}}{{k}_{1}}$倍,进而可得结论.

解答 解:∵向量$\overrightarrow{{a}_{1}}$=$(\begin{array}{l}{{a}_{1}}\\{{b}_{1}}\\{{c}_{1}}\end{array})$,$\overrightarrow{{a}_{2}}$=$(\begin{array}{l}{{a}_{2}}\\{{b}_{2}}\\{{c}_{2}}\end{array})$线性相关,
∴存在实数k1、k2使得:k1•$\overrightarrow{{α}_{1}}$+k2•$\overrightarrow{{α}_{2}}$=0,
∴$\overrightarrow{{α}_{1}}$=-$\frac{{k}_{2}}{{k}_{1}}$•$\overrightarrow{{α}_{2}}$,
∴$[\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}]$中第一行正好是第二行的-$\frac{{k}_{2}}{{k}_{1}}$倍,
∴$|\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}|$=0,
故答案为:0.

点评 本题考查矩阵行列式的值,涉及线性相关、行列式的性质等基础知识,注意解题方法的积累,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网