题目内容
11.如果向量$\overrightarrow{{a}_{1}}$=$(\begin{array}{l}{{a}_{1}}\\{{b}_{1}}\\{{c}_{1}}\end{array})$,$\overrightarrow{{a}_{2}}$=$(\begin{array}{l}{{a}_{2}}\\{{b}_{2}}\\{{c}_{2}}\end{array})$线性相关,则$|\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}|$=0.分析 通过向量$\overrightarrow{{a}_{1}}$=$(\begin{array}{l}{{a}_{1}}\\{{b}_{1}}\\{{c}_{1}}\end{array})$,$\overrightarrow{{a}_{2}}$=$(\begin{array}{l}{{a}_{2}}\\{{b}_{2}}\\{{c}_{2}}\end{array})$线性相关可知矩阵$[\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}]$中第一行正好是第二行的-$\frac{{k}_{2}}{{k}_{1}}$倍,进而可得结论.
解答 解:∵向量$\overrightarrow{{a}_{1}}$=$(\begin{array}{l}{{a}_{1}}\\{{b}_{1}}\\{{c}_{1}}\end{array})$,$\overrightarrow{{a}_{2}}$=$(\begin{array}{l}{{a}_{2}}\\{{b}_{2}}\\{{c}_{2}}\end{array})$线性相关,
∴存在实数k1、k2使得:k1•$\overrightarrow{{α}_{1}}$+k2•$\overrightarrow{{α}_{2}}$=0,
∴$\overrightarrow{{α}_{1}}$=-$\frac{{k}_{2}}{{k}_{1}}$•$\overrightarrow{{α}_{2}}$,
∴$[\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}]$中第一行正好是第二行的-$\frac{{k}_{2}}{{k}_{1}}$倍,
∴$|\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}|$=0,
故答案为:0.
点评 本题考查矩阵行列式的值,涉及线性相关、行列式的性质等基础知识,注意解题方法的积累,属于基础题.
A. | $\frac{1}{9}$ | B. | 1 | C. | 6 | D. | 9 |
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
A. | 1 | B. | k-1 | C. | k | D. | 2k |
A. | |t1+t2| | B. | |t1-t2| | C. | $\sqrt{{a}^{2}+{b}^{2}}$|t1-t2| | D. | $\frac{|{t}_{1}-{t}_{2}|}{\sqrt{{a}^{2}+{b}^{2}}}$ |
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
A. | 150° | B. | 120° | C. | 60° | D. | 30° |