题目内容

【题目】如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点

(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论;
(3)求DB与平面DEF所成角的正弦值.

【答案】
(1)证明:以DA、DC、DP所在直线为x轴、y轴、z轴建立空间直角坐标系(如图),

设AD=a,则D(0,0,0)、A(a,0,0)、B(a,a,0)、C(0,a,0)、E(a, ,0)、F( )、P(0,0,a)

=(﹣ ,0, ), =(0,a,0),

=(﹣ ,0, )(0,a,0)=0,

∴EF⊥DC


(2)解:设G(x,0,z),则G∈平面PAD.

=(x﹣ ,﹣ ,z﹣ ),

=(x﹣ ,﹣ ,z﹣ )(a,0,0)=a(x﹣ )=0,∴x=

=(x﹣ ,﹣ ,z﹣ )(0,﹣a,a)= +a(z﹣ )=0,∴z=0.

∴G点坐标为( ,0,0),即G点为AD的中点


(3)解:设平面DEF的法向量为 =(x,y,z).

得:

取x=1,则y=﹣2,z=1,

=(1,﹣2,1).

cos< >= = =

∴DB与平面DEF所成角的正弦值的大小为


【解析】以DA、DC、DP所在直线为x轴、y轴、z轴建立空间直角坐标系,设AD=a,可求出各点的坐标;(1)求出EF和CD的方向向量,根据向量垂直的充要条件,可证得 ,即EF⊥DC.(2)设G(x,0,z),根据线面垂直的性质,可得 = =0,进而可求出x,z值,得到G点的位置;(3)求出平面DEF的法向量为 ,及DB的方向 的坐标,代入向量夹角公式,可得DB与平面DEF所成角的正弦值
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想,以及对直线与平面垂直的性质的理解,了解垂直于同一个平面的两条直线平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网