题目内容
【题目】己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.
【答案】
(1)解:f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx+ +1﹣a,
若f(x)在(0,+∞)上单调递增,
则a≤lnx+ +1在(0,+∞)恒成立,(a>0),
令g(x)=lnx+ +1,(x>0),
g′(x)= ,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)递减,在(1,+∞)递增,
故g(x)min=g(1)=2,
故0<a≤2;
(2)解:若不等式(x﹣1)f(x)≥0恒成立,
即(x﹣1)[(x+1)lnx﹣a]≥0恒成立,
①x≥1时,只需a≤(x+1)lnx恒成立,
令m(x)=(x+1)lnx,(x≥1),
则m′(x)=lnx+ +1,
由(1)得:m′(x)≥2,
故m(x)在[1,+∞)递增,m(x)≥m(1)=0,
故a≤0,而a为正实数,故a≤0不合题意;
②0<x<1时,只需a≥(x+1)lnx,
令n(x)=(x+1)lnx,(0<x<1),
则n′(x)=lnx+ +1,由(1)n′(x)在(0,1)递减,
故n′(x)>n(1)=2,
故n(x)在(0,1)递增,故n(x)<n(1)=0,
故a≥0,而a为正实数,故a>0.
【解析】(1)求出函数f(x)的导数,问题转化为a≤lnx+ +1在(0,+∞)恒成立,(a>0),令g(x)=lnx+ +1,(x>0),根据函数的单调性求出a的范围即可;(2)问题转化为(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通过讨论x的范围,结合函数的单调性求出a的范围即可.
【题目】已知函数,则
()函数定义域为__________.
()函数导函数为__________.
()对函数单调研究如下
____
()设函数则
函数的最大值为__________.
(5)函数极值点共__________个,(6)其中极小值点有__________个.
(7)若关于的方程恰有三个不相同的实数解,则的取值范围为__________.