题目内容
8.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=$\frac{1}{3}$PC,若平面PAD⊥平面ABCD,PA=PD=AD,三棱锥M-BCQ的体积为$\frac{2}{3}$,求点Q到平面PAB的距离.
分析 (Ⅰ)由PA=PD,得到PQ⊥AD,又底面ABCD为菱形,∠BAD=60°,得BQ⊥AD,利用线面垂直的判定定理得到AD⊥平面PQB利用面面垂直的判定定理得到平面PQB⊥平面PAD;
(Ⅱ)由平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,得PQ⊥平面ABCD,利用三棱锥M-BCQ的体积为$\frac{2}{3}$,求出AB,利用等体积求点Q到平面PAB的距离.
解答 (I)证明:∵PA=PD,Q为AD的中点,∴PQ⊥AD,
又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,
又PQ∩BQ=Q,∴AD⊥平面PQB,
又∵AD?平面PAD,∴平面PQB⊥平面PAD;
(II)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,
∴PQ⊥平面ABCD,
设AB=2a,则由题意,PQ=QB=$\sqrt{3}$a,
∵PM=$\frac{1}{3}$PC,∴M到平面QBC的距离为$\frac{2\sqrt{3}}{3}$a,
∵BC⊥BQ,三棱锥M-BCQ的体积为$\frac{2}{3}$,
∴$\frac{1}{3}×\frac{1}{2}×2a×\sqrt{3}a×\frac{2\sqrt{3}}{3}a$=$\frac{2}{3}$,
∴a=1
设点Q到平面PAB的距离为h,则
△PAB中,PA=AB=2,PB=$\sqrt{6}$,∴S△PAB=$\frac{1}{2}×\sqrt{6}×\sqrt{4-\frac{3}{2}}$=$\frac{\sqrt{15}}{2}$
由等体积可VP-QBA=VQ-PAB得$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×\sqrt{3}=\frac{1}{3}×\frac{\sqrt{15}}{2}h$
∴h=$\frac{\sqrt{15}}{5}$.
点评 本题给出特殊四棱锥,求证面面垂直并求点Q到平面PAB的距离,着重考查了平面与平面垂直的判定、平面与平面垂直的性质和体积公式等知识,属于中档题.
A. | 7 | B. | 8 | C. | 10 | D. | 13 |
A. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | B. | $\frac{\sqrt{6}-\sqrt{3}}{2}$ | C. | $\sqrt{6}$-$\sqrt{2}$ | D. | $\sqrt{6}$-$\sqrt{3}$ |