题目内容
【题目】设函数.
(1)若,,求函数的极值;
(2)若是函数的一个极值点,试求出关于的关系式(即用表示),并确定的单调区间;(提示:应注意对的取值范围进行讨论)
(3)在(2)的条件下,设,函数,若存在使得成立,求的取值范围.
【答案】(1), ;(2),见解析; (3).
【解析】
(1)求出导函数的根,判断根左右两边导函数的符号,得到函数的单调性,据极大值极小值的定义求出极值;(2)据极值点处的导函数值为0得到a,b的关系;代入导函数中求出导函数的两根,讨论两根的大小;判断根左右两边导函数的符号,据导函数与单调性的关系求出单调区间;(3)据函数的单调性求出两个函数的值域,求出函数值的最小距离,最小距离小于1求出a的范围
(1)∵
当,时,则
令得,∵∴,解得,
∵当时,,当时,当时
∴当时,函数有极大值,,
当时,函数有极小值,.
(2)由(1)知
∵是函数的一个极值点
∴,即,解得,
则
令,得或
∵是极值点,∴,即
当即时,由得或
由得
当即时,由得或
由得
综上可知:当时,单调递增区间为和,递减区间为
当时,单调递增区间为和,递减区间为
(3)由(2)知,当时,在区间上的单调递减,在区间上单调递增,
∴函数在区间上的最小值为
又∵,,
∴函数在区间上的值域是,即
又在区间上是增函数,
且它在区间上的值域是
∵,
∴存在使得
成立只须仅须.
【题目】某高校在2019年的冬令营考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下图所示:
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | 0.050 | |
第2组 | 35 | 0.350 | |
第3组 | 10 | 0.100 | |
第4组 | 20 | 0.200 | |
第5组 | 30 | 0.300 | |
合计 | 100 | 1.00 |
(1)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(2)在(1)的前提下,高校决定在这6名学生中,随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被A考官测试的概率.