题目内容
【题目】已知 .
(1)若是上的增函数,求的取值范围;
(2)若函数有两个极值点,判断函数零点的个数.
【答案】(1) (2) 三个零点
【解析】
(1) 由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.
(1)由得,
由题意知恒成立,即,设,,
时,递减,时,,递增;
故,即,故的取值范围是.
(2)当时,单调,无极值;
当时,,
一方面,,且在递减,所以在区间有一个零点.
另一方面,,设 ,则,从而
在递增,则,即,又在递增,所以
在区间有一个零点.
因此,当时在和各有一个零点,将这两个零点记为,
,当时,即;当时,即
;当时,即:从而在递增,在
递减,在递增;于是是函数的极大值点,是函数的极小值点.
下面证明:,
由得,即,由
得 ,
令,则,
①当时,递减,则,而,故;
②当时,递减,则,而,故;
一方面,因为,又,且在递增,所以在
上有一个零点,即在上有一个零点.
另一方面,根据得,则有:
,
又,且在递增,故在上有一个零点,故在
上有一个零点.
又,故有三个零点.
练习册系列答案
相关题目