ÌâÄ¿ÄÚÈÝ
5£®ÓÃϸ¸Ö¹Üº¸½Ó¶ø³ÉµÄ»¨Ì³Î§À¸¹¹¼þÈçÓÒͼËùʾ£¬ËüµÄÍâ¿òÊÇÒ»¸öµÈÑüÌÝÐÎPQRS£¬ÄÚ²¿ÊÇÒ»¶ÎÅ×ÎïÏߺÍÒ»¸ùºáÁº£®Å×ÎïÏߵĶ¥µãÓëÌÝÐÎÉϵ×ÖеãÊǺ¸½ÓµãO£¬ÌÝÐεÄÑü½ô¿¿ÔÚÅ×ÎïÏßÉÏ£¬Á½ÌõÑüµÄÖеãÊÇÌÝÐεÄÑü¡¢Å×ÎïÏßÒÔ¼°ºáÁºµÄº¸½ÓµãA£¬B£¬Å×ÎïÏßÓëÌÝÐÎϵ׵ÄÁ½¸öº¸½ÓµãΪC£¬D£®ÒÑÖªÌÝÐεĸßÊÇ40ÀåÃ×£¬C¡¢DÁ½µã¼äµÄ¾àÀëΪ40ÀåÃ×£®£¨1£©ÇóºáÁºABµÄ³¤¶È£»
£¨2£©ÇóÌÝÐÎÍâ¿òµÄÓÃÁϳ¤¶È£®
£¨×¢£ºÏ¸¸Ö¹ÜµÄ´ÖϸµÈÒòËغöÂÔ²»¼Æ£¬¼ÆËã½á¹û¾«È·µ½1ÀåÃ×£®£©
·ÖÎö £¨1£©ÒÔOΪԵ㣬ÌÝÐεÄÉϵ×ËùÔÚÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£¬ÉèÌÝÐÎϵ×ÓëyÖá½»ÓÚµãM£¬Å×ÎïÏߵķ½³ÌΪ£ºx2=2py£¨p£¼0£©£¬ÀûÓÃD£¨20£¬-40£©£¬Çó³öp£¬µÃµ½Å×ÎïÏß·½³Ì£¬¼´¿ÉÇó½âºáÁºABµÄ³¤¶È£®
£¨2£©ËµÃ÷ÌÝÐÎÑüµÄÖеãÊÇÌÝÐεÄÑüÓëÅ×ÎïÏßΨһµÄ¹«¹²µãÉè${l_{RQ}}£ºy+20=k£¨{x-10\sqrt{2}}£©£¨{k£¼0}£©$£¬ÁªÁ¢ÔÚÓëÅ×ÎïÏß·½³Ì£¬Í¨¹ýÏàÇйØϵ£¬Çó³öÖ±ÏßµÄбÂÊ£¬È»ºóÇó½âÖÆ×÷ÌÝÐÎÍâ¿òµÄÓÃÁϳ¤¶È£®
½â´ð ½â£º£¨1£©Èçͼ£¬ÒÔOΪԵ㣬ÌÝÐεÄÉϵ×ËùÔÚÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£¬
ÉèÌÝÐÎϵ×ÓëyÖá½»ÓÚµãM£¬Å×ÎïÏߵķ½³ÌΪ£ºx2=2py£¨p£¼0£©£¬
ÓÉÌâÒâD£¨20£¬-40£©£¬µÃp=-5£¬x2=-10y¡3¡¯£¬
È¡$y=-20⇒x=¡À10\sqrt{2}$£¬
¼´$A£¨{-10\sqrt{2}£¬-20}£©£¬B£¨{10\sqrt{2}£¬-20}£©$£¬
$|{AB}|=20\sqrt{2}¡Ö28£¨{cm}£©$
´ð£ººáÁºABµÄ³¤¶ÈԼΪ28cm£®¡6¡¯
£¨2£©ÓÉÌâÒ⣬µÃÌÝÐÎÑüµÄÖеãÊÇÌÝÐεÄÑüÓëÅ×ÎïÏßΨһµÄ¹«¹²µã
Éè${l_{RQ}}£ºy+20=k£¨{x-10\sqrt{2}}£©£¨{k£¼0}£©$¡7¡¯
$\left\{{\begin{array}{l}{y+20=k£¨{x-10\sqrt{2}}£©}\\{{x^2}=-10y}\end{array}}\right.⇒{x^2}+10kx-100£¨{2+\sqrt{2}k}£©=0$£¬
Ôò$¡÷=100{k^2}+400£¨{2+\sqrt{2}k}£©=0⇒k=-2\sqrt{2}$£¬¼´${l_{RQ}}£ºy=-2\sqrt{2}x+20$¡10¡¯
µÃ$Q£¨{5\sqrt{2}£¬0}£©£¬R£¨{15\sqrt{2}£¬-40}£©$$⇒|{OQ}|=5\sqrt{2}£¬|{MR}|=15\sqrt{2}£¬|{RQ}|=30\sqrt{2}$£¬
ÌÝÐÎÖܳ¤Îª$2£¨{5\sqrt{2}+15\sqrt{2}+30\sqrt{2}}£©=100\sqrt{2}¡Ö141£¨{cm}£©$£®
´ð£ºÖÆ×÷ÌÝÐÎÍâ¿òµÄÓÃÁϳ¤¶ÈԼΪ141cm¡14¡¯
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏß·½³ÌµÄÓ¦Óã¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØϵµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
A£® | $\frac{27}{2}$ | B£® | 6 | C£® | $\frac{9}{2}$ | D£® | $\frac{7}{2}$ |
A£® | x1£¾x2 | B£® | x1£¼x2 | C£® | |x1|£¼|x2| | D£® | |x1|£¾|x2| |