题目内容
点P在正方体ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中点,且∠EPA=∠D1PD,则点P的轨迹是( )
A.直线 | B.圆 | C.抛物线 | D.双曲线 |
B
解析试题分析:由已知得即,在平面ABCD内以AD所在直线为x轴,AD中点为坐标原点建立直角坐标系,设A(1,0),B(-1,0),P(x,y),由建立等式化简得轨迹方程为,是圆的一般方程,所以答案选B。
考点:1.直角三角形中的三角函数定义;2.轨迹方程的求解
练习册系列答案
相关题目
(本小题12分)
已知椭圆C的左右焦点坐标分别是(-1,0),(1,0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。
(1)求椭圆C的方程;
(2)若圆P恰过坐标原点,求圆P的方程;
已知抛物线C:的焦点为,(,)是C上一点,=,则=( )
A.1 | B.2 | C.4 | D.8 |
已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )
A.-=1 | B.-=1 |
C.-=1 | D.-=1 |