题目内容

已知n次多项式Sn(x)=(1+2x)(1+4x)(1+8x)…(1+2nx),其中n是正整数.记Sn(x)的展开式中x的系数是an,x2的系数是bn
(Ⅰ)求an
(Ⅱ)证明:bn+1-bn=4n+1-2n+2
(Ⅲ)是否存在等比数列{cn}和正数c,使得bn=(cn-c)(cn+1-c)对任意正整数n成立?若存在,求出通项cn和正数c;若不存在,说明理由.
(Ⅰ)由题意得,an=2+4+…+2n,即an=
2(1-2n)
1-2
=2n+1-2

(Ⅱ)证明:由Sn(x)=(1+2x)(1+4x)…(1+2nx)
Sn+1(x)=(1+2n+1x)•Sn(x)
所以bn+1=bn+2n+1an=bn+2n+2(2n-1),即bn+1-bn=2n+2(2n-1)=4n+1-2n+2
(Ⅲ)由S1(x)=1+2x,得b1=0.
当n≥2时,
bn=
n
k=2
(bk-bk-1)=
n
k=2
2k+1(2k-1-1)=4[
22-22n
1-4
-
2-2n
1-2
]=4(2-2n)(1-
2+2n
3
)

bn=
8
3
(2n-1-1)(2n-1)

当n=1时,b1=0也适合上式,故bn=
8
3
(2n-1-1)(2n-1)
,n∈N*
因此,存在正数c=
8
3
=
2
6
3
和等比数列cn=c•2n-1=
6
3
2n
,使得bn=(cn-c)(cn+1-c)对于任意
正整数n成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网