题目内容

已知数列{an}为等差数列,Sn为前n项和,且S3=9,S8=64.
(Ⅰ)求数列{an}通项公式;
(Ⅱ)令bn=an(
1
2
)n
,Tn=b1+b2+…+bn,求Tn
(Ⅰ)∵S3=9,S8=64.
3a1+3d=9
8a1+28d=64
,解得a1=1,d=2,
即数列{an}的通项公式an=2n-1.
(Ⅱ)∵bn=an(
1
2
)n

bn=an(
1
2
)n
=(2n-1)•(
1
2
)n

Tn=
1
2
+3?(
1
2
)
2
+5?(
1
2
)
3
+???(2n-1)?(
1
2
)
n
,①
1
2
Tn=(
1
2
)
2
+3?(
1
2
)
3
+5?(
1
2
)
4
+???(2n-1)?(
1
2
)
n+1
,②,
两式相减得
1
2
Tn=
1
2
+2?(
1
2
)
2
+2?(
1
2
)
3
+???+2(
1
2
)
n
-(
1
2
)
n+1

Tn=3-
2n+3
2n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网