题目内容
如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=
,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240353529992444.jpg)
(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角QACD的余弦值为
?若存在,求出
的值;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035352968344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240353529992444.jpg)
(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角QACD的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353015466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353030547.png)
(1)
(2)
(3)存在,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353093339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353015466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353077419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353093339.png)
解:(1)在△PAD中,PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,所以PO⊥平面ABCD.
又在直角梯形ABCD中,连接OC,易得OC⊥AD,所以以O为坐标原点,OC,OD,OP所在直线分别为x,y,z轴建立空间直角坐标系,则P(0,0,1),A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),
∴
=(1,-1,-1),易证OA⊥平面POC,
∴
=(0,-1,0)是平面POC的法向量,
cos〈
,
〉=
=
.
∴直线PB与平面POC所成角的余弦值为
.
(2)
=(0,1,-1),
=(-1,0,1).
设平面PDC的一个法向量为u=(x,y,z),
则
取z=1,得u=(1,1,1).
∴B点到平面PCD的距离为
d=
=
.
(3)假设存在一点Q,则设
=λ
(0<λ<1).
∵.
.=(0,1,-1),
∴
=(0,λ,-λ)=
-
,
∴
=(0,λ,1-λ),∴Q(0,λ,1-λ).
设平面CAQ的一个法向量为m=(x,y,z),
又
=(1,1,0),AQ=(0,λ+1,1-λ),
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240353534521725.png)
取z=λ+1,得m=(1-λ,λ-1,λ+1),
又平面CAD的一个法向量为n=(0,0,1),
二面角QACD的余弦值为
,
所以|cos〈m,n〉|=
=
,
得3λ2-10λ+3=0,解得λ=
或λ=3(舍),
所以存在点Q,且
=
.
又在直角梯形ABCD中,连接OC,易得OC⊥AD,所以以O为坐标原点,OC,OD,OP所在直线分别为x,y,z轴建立空间直角坐标系,则P(0,0,1),A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353108375.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353124394.png)
cos〈
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353108375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353124394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353186798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353077419.png)
∴直线PB与平面POC所成角的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353015466.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353233380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353249401.png)
设平面PDC的一个法向量为u=(x,y,z),
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240353532641225.png)
∴B点到平面PCD的距离为
d=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353280588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353077419.png)
(3)假设存在一点Q,则设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353327418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353233380.png)
∵.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353233380.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353327418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353374397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353405381.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353374397.png)
设平面CAQ的一个法向量为m=(x,y,z),
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353436421.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240353534521725.png)
取z=λ+1,得m=(1-λ,λ-1,λ+1),
又平面CAD的一个法向量为n=(0,0,1),
二面角QACD的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353015466.png)
所以|cos〈m,n〉|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353483546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353015466.png)
得3λ2-10λ+3=0,解得λ=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353514325.png)
所以存在点Q,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353030547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035353093339.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目