题目内容

【题目】如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.

【答案】证明:(Ⅰ)∵四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,
BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点,
∴以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,
设PC=AD=2DC=2CB=2,
则C(0,1,0),D(0,0,0),P(1,0,1),E( ),A(2,0,0),B(1,1,0),
=( ), =(1,0,﹣1), =(0,1,﹣1),
设平面PAB的法向量 =(x,y,z),
,取z=1,得 =(1,1,1),
= =0,CE平面PAB,
∴CE∥平面PAB.
解:(Ⅱ) =(﹣1,1,﹣1),设平面PBC的法向量 =(a,b,c),
,取b=1,得 =(0,1,1),
设直线CE与平面PBC所成角为θ,
则sinθ=|cos< >|= = =
∴直线CE与平面PBC所成角的正弦值为

【解析】(Ⅰ)以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,利用向量法能证明CE∥平面PAB.
(Ⅱ)求出平面PBC的法向量和 ,利用向量法能求出直线CE与平面PBC所成角的正弦值.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对空间角的异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网