题目内容
已知函数f(x)=logax(a>0且a≠1),(x∈(0,+∞)),若x1,x2∈(0,+∞),判断
[f(x1)+f(x2)]与f(
)的大小,并加以证明.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612391213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612406297.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612391213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
f(x1)+f(x2)=logax1+logax2=logax1x2,
∵x1,x2∈(0,+∞),x1x2≤(
)2(当且仅当x1=x2时取“=”号),
当a>1时,有logax1x2≤loga(
)2,
∴
logax1x2≤loga(
),
(logax1+logax2)≤loga
,
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612391213.gif)
f(x1)+f(x2)]≤f(
)(当且仅当x1=x2时取“=”号)
当0<a<1时,有logax1x2≥loga(
)2,
∴
(logax1+logax2)≥loga
,即
[f(x1)+f(x2)]≥f(
)(当且仅当x1=x2时取“=”号).
∵x1,x2∈(0,+∞),x1x2≤(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
当a>1时,有logax1x2≤loga(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612391213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612391213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612391213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612593109.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
当0<a<1时,有logax1x2≥loga(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612391213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612391213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123612437304.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目