题目内容
如图,直线
,抛物线
,已知点
在抛物线
上,且抛物线
上的点到直线
的距离的最小值为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240358451415440.jpg)
(1)求直线
及抛物线
的方程;
(2)过点
的任一直线(不经过点
)与抛物线
交于
、
两点,直线
与直线
相交于点
,记直线
,
,
的斜率分别为
,
,
.问:是否存在实数
,使得
?若存在,试求出
的值;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845016786.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845032911.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845063517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845125510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240358451415440.jpg)
(1)求直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
(2)过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845203547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845219289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845250300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845266309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845281396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845328399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845344367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845359365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845375456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845391337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845406366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845406368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845422323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845437629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845422323.png)
(1)直线
的方程为
,抛物线
的方程为
.(2)存在且![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845531429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845484505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845515527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845531429.png)
试题分析:
(1)把点P的坐标带入抛物线方程即可求出抛物线方程,而直线l方程的求解有两种方法,法1,可以考虑求出既与抛物线相切,又与直线l平行的直线,该直线与直线l的距离即为抛物线上的点到直线l的最短距离,进而可以求的相应的b值。法二,可以设抛物线上任意一点为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845531659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845531659.png)
(2)直线AB经过点Q且不经过P,所以直线AB斜率存在且利用点斜式设出直线方程,联立直线与抛物线方程,得到关于A,B横坐标或者纵坐标的韦达定理,进而利用AB直线的斜率表示PA,PB直线的斜率,再联立直线AB与直线l,用AB直线斜率表示PM直线的斜率,得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845562524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845437629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845422323.png)
试题解析:
(1)(法一)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845609235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845063517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845640389.png)
设与直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845687319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845718540.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845734925.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845749852.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845765983.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845796195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845812398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845827508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845687319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845859564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845609235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845687319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845796195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845952895.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845968403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845983361.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845796195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845484505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845515527.png)
(法二)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845609235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845063517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845640389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845515527.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846202974.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845328399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846249920.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846264721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240358462951065.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846342452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846358342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846373599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846389835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845968403.png)
因此,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845110280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845484505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845079313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845515527.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846467222.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845281396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846576191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845281396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846607704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846623628.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240358466391000.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846654783.png)
设点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845250300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845266309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846701616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846717644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846748674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846763769.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240358467791248.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846795696.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240358468263559.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846841955.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846904726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846919723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846576191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240358469511187.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035846966628.png)
因此,存在实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845422323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845437629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035845531429.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目