题目内容
(本题满分12分)已知函数,其中(1) 若为R上的奇函数,求的值;(2) 若常数,且对任意恒成立,求的取值范围.
(Ⅰ) (Ⅱ).
解析
本小题满分8分已知函数,求函数的定义域,判断函数的奇偶性,并说明理由.
设a∈R,函数f(x)=lnx-ax.(1)讨论函数f(x)的单调区间和极值;(2)已知(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>e.
已知函数的两个零点为,设,,且,求实数的取值范围.
若是关于的方程的两根,求的最大值和最小值.
(本小题满分12分)函数是定义在上的奇函数,且.(1)求实数的值.(2)用定义证明在上是增函数;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值(无需说明理由).
(本小题满分14分)已知函数是定义域为R的偶函数,其图像均在x轴的上方,对任意的,都有,且,又当时,为增函数。(1)求的值;(2)对于任意正整数,不等式:恒成立,求实数的取值范围。
函数,①求函数的定义域; ②求的值; (10分)
定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f(x)= .(Ⅰ)求f(x)在[-1, 1]上的解析式; (Ⅱ)证明f(x)在(0, 1)上时减函数; (Ⅲ)当λ取何值时, 方程f(x)=λ在[-1, 1]上有解?