题目内容
本小题满分8分已知函数,求函数的定义域,判断函数的奇偶性,并说明理由.
为奇函数 。
解析
已知函数(1)若,求的值;(2)若的图像与直线相切于点,求的值;(3)在(2)的条件下,求函数的单调区间.
(本小题满分12分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题:(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米空气的含药量降到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到进教室?
已知函数 (1)求函数的值域;(2)若时,函数的最小值为,求的值和函数 的最大值.
(本小题满分12分)已知是定义在上的偶函数,且当时,.(1)求当时,的解析式;(2)作出函数的图象,并指出其单调区间(不必证明).
(12分)已知函数(1)试证明在上为增函数;(2)当时,求函数的最值
(本题满分12分)已知函数,其中(且 ⑴求函数的定义域; ⑵判断函数的奇偶性,并予以证明; ⑶判断它在区间(0,1)上的单调性并说明理由。
(本小题满分12分)已知函数(1)求函数的单调递减区间;(2)设,的最小值是,最大值是,求实数的值.
(本题满分12分)已知函数,其中(1) 若为R上的奇函数,求的值;(2) 若常数,且对任意恒成立,求的取值范围.