ÌâÄ¿ÄÚÈÝ
Ö±Ïßl£ºy=m£¨mΪʵ³£Êý£©ÓëÇúÏßE£ºy=|lnx|µÄÁ½¸ö½»µãA¡¢BµÄºá×ø±ê·Ö±ðΪx1¡¢x2£¬ÇÒx1£¼x2£¬ÇúÏßEÔÚµãA¡¢B´¦µÄÇÐÏßPA¡¢PBÓëyÖá·Ö±ð½»ÓÚµãM¡¢N£®ÓÐÏÂÃæ5¸ö½áÂÛ£º
¢Ù|
|=2£»
¢ÚÈý½ÇÐÎPAB¿ÉÄÜΪµÈÑüÈý½ÇÐΣ»
¢ÛÈôÖ±ÏßlÓëyÖáµÄ½»µãΪQ£¬Ôò|PQ|=1£»
¢ÜÈôµãPµ½Ö±ÏßlµÄ¾àÀëΪd£¬ÔòdµÄÈ¡Öµ·¶Î§Îª£¨0£¬1£©£»
¢Ýµ±x1ÊǺ¯Êýg£¨x£©=x2+lnxµÄÁãµãʱ£¬|
|£¨0Ϊ×ø±êԵ㣩ȡµÃ×îСֵ£®
ÆäÖÐÕýÈ·½áÂÛÓÐ £®£¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©
¢Ù|
MN |
¢ÚÈý½ÇÐÎPAB¿ÉÄÜΪµÈÑüÈý½ÇÐΣ»
¢ÛÈôÖ±ÏßlÓëyÖáµÄ½»µãΪQ£¬Ôò|PQ|=1£»
¢ÜÈôµãPµ½Ö±ÏßlµÄ¾àÀëΪd£¬ÔòdµÄÈ¡Öµ·¶Î§Îª£¨0£¬1£©£»
¢Ýµ±x1ÊǺ¯Êýg£¨x£©=x2+lnxµÄÁãµãʱ£¬|
AO |
ÆäÖÐÕýÈ·½áÂÛÓÐ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼ÆËãÌâ,ÊýÐνáºÏ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ,µ¼ÊýµÄ¸ÅÄî¼°Ó¦ÓÃ,Ö±ÏßÓëÔ²
·ÖÎö£º»³öy=mºÍy=|lnx|µÄͼÏó£¬Çó³öÇÐÏßµÄбÂÊ£¬Çó³ö½»µãµÄ×ø±êM£¬N£¬¼´¿ÉµÃµ½MNµÄ³¤£¬¼´¿ÉÅжϢ٣»
ͨ¹ýͼÏó¹Û²ì·ÖÎö£¬Á½ÇÐÏß´¹Ö±£¬¼´¿ÉÅжϢڣ»Çó³öPµÄ×ø±ê£¬ÔÙÇóPQ³¤£¬¼´¿ÉÅжϢܣ»
ÓÉÁãµãµÄ¶¨Ò壬Çó³öAOµÄ³¤£¬ÔËÓú¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÅжϢݣ®
ͨ¹ýͼÏó¹Û²ì·ÖÎö£¬Á½ÇÐÏß´¹Ö±£¬¼´¿ÉÅжϢڣ»Çó³öPµÄ×ø±ê£¬ÔÙÇóPQ³¤£¬¼´¿ÉÅжϢܣ»
ÓÉÁãµãµÄ¶¨Ò壬Çó³öAOµÄ³¤£¬ÔËÓú¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÅжϢݣ®
½â´ð£º
½â£º¶ÔÓÚ¢Ù£¬ÓÉ|lnx1|=|lnx2|£¬¿ÉµÃ£¬
x1x2=1£¬ÇÒ0£¼x1£¼1£¬x2£¾1£¬ÇÒA£¨x1£¬-lnx1£©
B£¨x2£¬lnx2£©£¬ÔÚAµã´¦µÄÇÐÏßбÂÊΪ-
£¬
ÔÚBµã´¦µÄÇÐÏßбÂÊΪ£º
£¬
ÔòÉèM£¨0£¬s£©£¬N£¨0£¬n£©£¬
ÔòÓÐ
=-
£¬½âµÃ£¬s=1-lnx1£¬
ÓÉ
=
£¬½âµÃ£¬n=lnx2-1£¬
ÔòÓÐ|MN|=1-lnx1-£¨lnx2-1£©=2-ln£¨x1x2£©=2£¬Ôò¢Ù¶Ô£»
¶ÔÓÚ¢Ú£¬Èô¡÷PABΪµÈÑüÈý½ÇÐΣ¬¼´PA=PB£¬»òPA=AB£¬»òPB=AB£¬
ÈôPA=PB£¬ÔòPÔÚABµÄÖд¹ÏßÉÏ£¬²»¿ÉÄÜ£»ÈôPA=AB£¬Ò×µÃPµÄºá×ø±êСÓÚ1£¬²»³ÉÁ¢£»
ÈôPB=AB£¬ÔòÓÉÓÚ-
•
=-1£¬¼´ÓÐPA¡ÍBP£¬Ôò²»³ÉÁ¢£¬¹Ê¢Ú´í£»
¶ÔÓÚ¢Û£¬Q£¨0£¬m£©£¬ÓÉy+lnx1=1-
xºÍy-lnx2=
-1£¬x1x2=1£¬
½âµÃ½»µãP£¨
£¬1-lnx1-
£©£¬ÓÉÓÚm=lnx2=-lnx1£¬
ÔòÓÐ|PQ|=
=1£®¹Ê¢Û¶Ô£»
¶ÔÓڢܣ¬d=m-£¨1-lnx1-
£©=
=-1+
¡Ê£¨0£¬1£©£¬¹Ê¢Ü¶Ô£»
¶ÔÓڢݣ¬µ±x1ÊǺ¯Êýg£¨x£©=x2+lnxµÄÁãµãʱ£¬¼´ÓÐx12+lnx1=0£¬
|
|=
=
£¬ÓÉÓÚ0£¼x1£¼1£¬ÔòÈ¡²»µ½×îСֵ£¬¹Ê¢Ý´í£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
x1x2=1£¬ÇÒ0£¼x1£¼1£¬x2£¾1£¬ÇÒA£¨x1£¬-lnx1£©
B£¨x2£¬lnx2£©£¬ÔÚAµã´¦µÄÇÐÏßбÂÊΪ-
1 |
x1 |
ÔÚBµã´¦µÄÇÐÏßбÂÊΪ£º
1 |
x2 |
ÔòÉèM£¨0£¬s£©£¬N£¨0£¬n£©£¬
ÔòÓÐ
s+lnx1 |
-x1 |
1 |
x1 |
ÓÉ
n-lnx2 |
-x2 |
1 |
x2 |
ÔòÓÐ|MN|=1-lnx1-£¨lnx2-1£©=2-ln£¨x1x2£©=2£¬Ôò¢Ù¶Ô£»
¶ÔÓÚ¢Ú£¬Èô¡÷PABΪµÈÑüÈý½ÇÐΣ¬¼´PA=PB£¬»òPA=AB£¬»òPB=AB£¬
ÈôPA=PB£¬ÔòPÔÚABµÄÖд¹ÏßÉÏ£¬²»¿ÉÄÜ£»ÈôPA=AB£¬Ò×µÃPµÄºá×ø±êСÓÚ1£¬²»³ÉÁ¢£»
ÈôPB=AB£¬ÔòÓÉÓÚ-
1 |
x1 |
1 |
x2 |
¶ÔÓÚ¢Û£¬Q£¨0£¬m£©£¬ÓÉy+lnx1=1-
1 |
x1 |
x |
x2 |
½âµÃ½»µãP£¨
2x1 |
1+x12 |
2 |
1+x12 |
ÔòÓÐ|PQ|=
(
|
¶ÔÓڢܣ¬d=m-£¨1-lnx1-
2 |
1+x12 |
1-x12 |
1+x12 |
2 |
1+x12 |
¶ÔÓڢݣ¬µ±x1ÊǺ¯Êýg£¨x£©=x2+lnxµÄÁãµãʱ£¬¼´ÓÐx12+lnx1=0£¬
|
AO |
x12+(lnx1)2 |
x14+x12 |
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
µãÆÀ£º±¾Ì⿼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壺ÇúÏßÔڸõ㴦µÄÇÐÏßµÄбÂÊ£¬¿¼²éÁ½µãµÄ¾àÀëºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éº¯ÊýµÄ×îÖµµÄÇ󷨣¬¿¼²éÔËËãºÍÅжÏÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÇúÏßy2=|x|+1µÄ²¿·ÖͼÏóÊÇ£¨¡¡¡¡£©
A¡¢ |
B¡¢ |
C¡¢ |
D¡¢ |
²»µÈʽ|x|£¨2x-1£©¡Ü0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A¡¢£¨-¡Þ£¬
| ||
B¡¢£¨-¡Þ£¬0£©¡È£¨0£¬
| ||
C¡¢[-
| ||
D¡¢[0£¬
|