题目内容
【题目】已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g(x)=x2﹣2x+m.如果对于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是
【答案】[﹣5,﹣2]
【解析】解:∵f(x)是定义在[﹣2,2]上的奇函数,∴f(0)=0,
当x∈(0,2]时,f(x)=2x﹣1∈(0,3],
则当x∈[﹣2,2]时,f(x)∈[﹣3,3],
若对于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),
则等价为g(x)max≥3且g(x)min≤﹣3,
∵g(x)=x2﹣2x+m=(x﹣1)2+m﹣1,x∈[﹣2,2],
∴g(x)max=g(﹣2)=8+m,g(x)min=g(1)=m﹣1,
则满足8+m≥3且m﹣1≤﹣3,
解得m≥﹣5且m≤﹣2,
故﹣5≤m≤﹣2,
所以答案是:[﹣5,﹣2]
【考点精析】利用特称命题对题目进行判断即可得到答案,需要熟知特称命题:,,它的否定:,;特称命题的否定是全称命题.
练习册系列答案
相关题目
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/oC | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出关于的线性回归方程
(2)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠.
(参考公式,)