题目内容
【题目】已知f(x)=loga(x+1),g(x)=loga(1﹣x),a>0且a≠1,则使f(x)﹣g(x)>0成立的x的集合是 .
【答案】当0<a<1时,原不等式的解集为{x|﹣1<x<0};当a>1时,原不等式的解集为{x|0<x<1}
【解析】解:f(x)﹣g(x)>0,即 loga(x+1)﹣loga(1﹣x)>0,loga(x+1)>loga(1﹣x).
当0<a<1时,上述不等式等价于 ,解得﹣1<x<0;
当a>1时,原不等式等价于 ,解得0<x<1.
综上所述,当0<a<1时,原不等式的解集为{x|﹣1<x<0};
当a>1时,原不等式的解集为{x|0<x<1}.
所以答案是:当0<a<1时,原不等式的解集为{x|﹣1<x<0};a>1时,原不等式的解集为{x|0<x<1}.
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数y与月份之间的回归直线方程+
(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;
(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过1年 | 22 | 8 | 30 |
驾龄1年以上 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?
参考公式及数据:,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)