题目内容
已知数列{an}满足a1=4,an=4-
(n≥2),令bn=
.
(1)求证数列{bn}是等差数列;
(2)求数列{an}的通项公式.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535109379.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535109395.gif)
(1)求证数列{bn}是等差数列;
(2)求数列{an}的通项公式.
(1)同解析,(2)数列{an}的通项公式an=2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535125234.gif)
.(1)证明:an+1-2=2-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535156597.gif)
∴
(n≥1)
故
(n≥1),即bn+1-bn=
(n≥1)
∴数列{bn}是等差数列.
(2)解析:∵{
}是等差数列
∴
, ∴an=2+![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535125234.gif)
∴数列{an}的通项公式an=2+![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535125234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535156597.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535172829.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535187629.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535203225.gif)
∴数列{bn}是等差数列.
(2)解析:∵{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535109395.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535234762.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535125234.gif)
∴数列{an}的通项公式an=2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133535125234.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目