题目内容
【题目】如图所示,某公园内有两条道路,,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知, .
(1)若绿化区域的面积为1,求道路的长度;
(2)若绿化区域改造成本为10万元/,新建道路成本为10万元/.设(),当为何值时,该计划所需总费用最小?
【答案】(1)(2)
【解析】
(1)由的面积可得,结合余弦定理可得结果.
(2)在中利用正弦定理可得,.从而得到总费用 .利用导数研究最值即可.
(1)因为在中,已知, ,
所以由的面积,
解得.
在中,由余弦定理得:
,
所以.
(2)由,则,.
在中,, ,由正弦定理得,
所以,.
记该计划所需费用为,
则 .
令,则,
由,得.所以当时,,单调递减;
当时,,单调递增.
所以时,该计划所需费用最小.
【题目】为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证.某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级学生中抽取了100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占,而抽取的女生中有15人表示对游泳没有兴趣.
(1)试完成下面的列联表,并判断能否有的把握认为“对游泳是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率.
(3)该研究性学习小组在调查中发现,对游泳有兴趣的学生中有部分曾在市级和市级以上游泳比赛中获奖,如下表所示.若从高一(8)班和高一(9)班获奖学生中各随机选取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.
班级 | |||||||||||
市级比赛 获奖人数 | 2 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 2 | |
市级以上比赛获奖人数 | 2 | 2 | 1 | 0 | 2 | 3 | 3 | 2 | 1 | 2 |
0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.