题目内容
【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:
若将月均课外阅读时间不低于30小时的学生称为“读书迷”.
(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
(i)共有多少种不同的抽取方法?
(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.
【答案】(Ⅰ)210;(Ⅱ)(ⅰ)12;(ⅱ) .
【解析】试题分析:(Ⅰ)本问考查用样本的数字特征估计总体的数字特征,由茎叶图可知,月均课外阅读时间不低于30小时的学生人数为7人,所占比例为 ,因此该校900人中的“读书迷”的人数为人;(Ⅱ)(ⅰ)本问考查古典概型基本事件空间,设抽取的男“读书迷”为, , ,抽取的女“读书迷”为, , , (其中下角标表示该生月平均课外阅读时间),于是可以列出基本事件空间;(ⅱ)根据题意可知,符合条件的基本事件为, , , , ,于是可以求出概率.
试题解析:(Ⅰ)设该校900名学生中“读书迷”有人,则,解得.
所以该校900名学生中“读书迷”约有210人.
(Ⅱ)(ⅰ)设抽取的男“读书迷”为, , ,抽取的女“读书迷”为
, , , (其中下角标表示该生月平均课外阅读时间),
则从7名“读书迷”中随机抽取男、女读书迷各1人的所有基本事件为:
, , , ,
, , , ,
, , , ,
所以共有12种不同的抽取方法.
(ⅱ)设A表示事件“抽取的男、女两位读书迷月均读书时间相差不超过2小时”,
则事件A包含, , , , ,
6个基本事件,
所以所求概率.
【题目】股票市场的前身是起源于1602年荷兰人在阿姆斯特河大桥上进行荷属东印度公司股票的买卖,而正规的股票市场最早出现在美国.2017年2月26号,中国证监会主席刘士余谈了对股市的几点建议,给广大股民树立了信心.最近,张师傅和李师傅要将家中闲置资金进行投资理财.现有两种投资方案,且一年后投资盈亏的情况如下:
(1)投资股市:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
(2)购买基金:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
(Ⅰ)当时,求的值;
(Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求的取值范围;
(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率.