题目内容
设抛物线()的焦点为F,经过点 F的直线交抛物线于A、B两点.点C在抛物线的准线上,且BC∥X轴.证明直线AC经过原点O.
证明略
因为抛物线()的焦点为,所以经过点F的直线AB的方程可设为
,代人抛物线方程得
.
若记,,则是该方程的两个根,所以
.
因为BC∥X轴,且点C在准线上,所以点C的坐标为,
故直线CO的斜率为
即也是直线OA的斜率,所以直线AC经过原点O.
,代人抛物线方程得
.
若记,,则是该方程的两个根,所以
.
因为BC∥X轴,且点C在准线上,所以点C的坐标为,
故直线CO的斜率为
即也是直线OA的斜率,所以直线AC经过原点O.
练习册系列答案
相关题目