题目内容
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.
【答案】
(1)解:由题意可得,直线l的斜率存在,
设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.
由已知可得圆C的圆心C的坐标(2,3),半径R=1.
故由 =1,解得:k1= ,k2= .
故当 <k< ,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.
(2)解:设M(x1,y1);N(x2,y2),
由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,
可得 (1+k2)x2﹣4(k+1)x+7=0,
∴x1+x2= ,x1x2= ,
∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1
= k2+k +1= ,
由 =x1x2+y1y2= =12,解得 k=1,
故直线l的方程为 y=x+1,即 x﹣y+1=0.
圆心C在直线l上,MN长即为圆的直径.
所以|MN|=2.
【解析】(1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.
【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,所得数据如表所示:
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
画出上表数据的散点图如图所示
(其中 , = ﹣ )
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 = x+ .
(2)试根据(1)求出的线性回归方程,预测记忆力为9的学生的判断力