题目内容
【题目】如图,已知位于轴左侧的圆与轴相切于点且被轴分成的两段圆弧长之比为,直线与圆相交于,两点,且以为直径的圆恰好经过坐标原点.
(1)求圆的方程;
(2)求直线的斜率的取值范围.
【答案】(1)(2)或
【解析】
(1)依题意可设圆心,根据圆的性质可以得出,进而可以求出圆的标准方程;
(2)解法1.
依题意知,只需求出点(或)在劣弧上运动时的直线(或)斜率,设其直线方程为,根据直线与圆的位置关系,结合点到直线的距离公式,可以求出的取值范围,根据点在劣弧上,点在劣弧上,求出直线的斜率,进而求出直线的斜率的取值范围,在讨论线的斜率为零时,是否满足,最后确定直线的斜率的取值范围;
解法2.
当时,直线的方程为,根据直线与圆的位置关系结合点到直线距离公式,求出斜率的取值范围,再以代求出斜率的取值范围,接着讨论时,是否满足条件,最后确定斜率的取值范围.
(1)依题意可设圆心.设圆与轴交于点,因为圆被轴分成的两段圆弧之比为,所以.于是,圆心.
所以圆的方程为.
(2)解法1.
依题意知,只需求出点(或)在劣弧上运动时的直线
(或)斜率,设其直线方程为,
此时有,解得.
若点在劣弧上,则直线的斜率,于是;
若点在劣弧上,则直线的斜率,于是.
又当时,点为,也满足条件综上所述,所求的直线的斜率的取值范围为或
解法2.
当时,直线的方程为,由题意得,解得.
以代得,,解得或.
当时,也满足题意.
综上所述,的取值范围是或
【题目】随着我国经济的高速发展,汽车的销量也快速增加,每年因道路交通安全事故造成伤亡人数超过万人,根据国家质量监督检验检疫局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验》(-醉驾车的测试)的规定:饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为,某市交通部门从年饮酒后驾驶机动车辆发生交通事故的驾驶员中随机抽查了人进行统计,得到如下数据:
酒精含量 | |||||
发生交通事故的人数 |
已知从这人中任意抽取两人,两人均是醉酒驾车的概率是.
(1)求,的值;
(2)实践证明,驾驶人员血液中的酒精含量与发生交通事故的人数具有线性相关性,试建立关于的线性回归方程;
(3)试预测,驾驶人员血液中的酒精含量为多少时,发生交通事故的人数会超过取样人数的?
参考数据:,
回归直线方程中系数计算公式,.
【题目】某绿色有机水果店中一款有机草莓味道鲜甜,店家每天以每斤元的价格从农场购进适量草莓,然后以每斤元的价格出售,如果当天卖不完,剩下的草莓由果汁厂以每斤元的价格回收.
(1)若水果店一天购进斤草莓,求当天的利润(单位:元)关于当天需求量(单位:斤,)的函数解析式;
(2)水果店记录了天草莓的日需求量(单位:斤),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 14 | 22 | 14 | 16 | 15 | 13 | 6 |
①假设水果店在这天内每天购进斤草莓,求这天的日利润(单位:元)的平均数;
②若水果店一天购进斤草莓,以天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于元的概率.