题目内容
9.设函数f(x)=x3-3x2-9x,求函数f(x)的极大值.分析 先求出函数的导数,得到函数的单调区间,从而求出函数的极大值.
解答 解:f′(x)=3x2-6x-9=3(x-3)(x+1),
令f′(x)>0,解得:x>3或x<-1,
令f′(x)<0,解得:-1<x<3,
∴函数f(x)在(-∞,-1),(3,+∞)递增,在(-1,3)递减,
∴f(x)极大值=f(-1)=-1-3+9=5.
点评 本题考查了函数的单调性,函数的极值问题,考查导数的应用,是一道基础题.
练习册系列答案
相关题目
19.有A、B、C、D、E共5人并排站一起,若A、B必须相邻,且B在A的右边,那么不同的站法有( )
A. | 24种 | B. | 36种 | C. | 48种 | D. | 60种 |
20.已知点A(7,-4),B(-5,6)则线段AB垂直平分线方程是( )
A. | 6x-5y-1=0 | B. | 5x+6y+1=0 | C. | 6x+5y-1=0 | D. | 5x-6y-1=0 |
17.化简2$\sqrt{1+sin10}$+$\sqrt{2+2cos10}$的结果是( )
A. | 2sin5 | B. | 4cos5+2sin5 | C. | -4cos5-2sin5 | D. | -2sin5 |
14.设F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的两个焦点,P在双曲线上,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,$|{\overrightarrow{P{F_1}}}|•|{\overrightarrow{P{F_2}}}|=2ac$(c为半焦距),则双曲线的离心率为( )
A. | $\frac{{\sqrt{3}-1}}{2}$ | B. | $\frac{{\sqrt{3}+1}}{2}$ | C. | 2 | D. | $\frac{{\sqrt{5}+1}}{2}$ |