题目内容
【题目】设是数列的前项和, .
(1)求证:数列是等差数列,并求的通项;
(2)设,求数列的前项和.
【答案】(1)证明见解析, ;(2).
【解析】试题分析:当数列提供与、之间的递推关系时,要数列是等差数列,只需利用,转化为、之间的关系,证明某数列是等差数列,就是证明第n+1项与第n项的比是一个常数,这个分析给证明提供一个暗示,有了证明的目标,从递推关系式向着这个目标进行等价变形,就可得出所要证明的式子,达到证明的目的;已知数列的前n项和,求通项公式分两步,第一步n=1 时,求出首项,第二步,当时利用前n项和与前n-1项和作差求出第n项,若首项满足后者,则可书写统一的通项公式,若首项不满足,则通项公式要写成分段函数形式,有关数列求和问题,主要方法有倒序相加法、错位相减法、分组求和法、公式法等,要根据数列通项的形式特点采用相应的方法求和.
试题解析:
(1),∴,
即, ,
∴数列是等差数列.
由上知数列是以2为公差的等差数列,首项为,
∴,∴.
∴.
(或由得),
由题知, ,
综上, .
(2)由(1)知 ,
∴,
∴.
【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.
参考数据如下:
附临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的观测值: (其中)
【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:
超市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)用二次函数回归模型拟合与的关系,可得回归方程:,
经计算二次函数回归模型和线性回归模型的分别约为和,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.
参数数据及公式:,,
.