题目内容
4.计算:(1)(2x${\;}^{\frac{1}{2}}$+3y${\;}^{-\frac{1}{4}}$)(2x${\;}^{\frac{1}{2}}$-3y${\;}^{-\frac{1}{4}}$)
(2)4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷(-6x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$)
(3)$\frac{lg240-1-\frac{1}{2}lg36}{1-lg36+lg\frac{36}{5}}$
(4)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log89•log34.
分析 (1)利用平方差公式化简原式=$(2{x}^{\frac{1}{2}})^{2}$-$(3{y}^{-\frac{1}{4}})^{2}$;
(2)4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷(-6x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$)=4×(-3)÷(-6)${x}^{\frac{1}{4}+\frac{1}{4}-(-\frac{1}{2})}$${y}^{-\frac{1}{3}-(-\frac{2}{3})}$;
(3)$\frac{lg240-1-\frac{1}{2}lg36}{1-lg36+lg\frac{36}{5}}$=$\frac{lg24+1-1-lg6}{1-lg36+lg36-lg5}$═$\frac{lg4}{lg2}$;
(4)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log89•log34=lg($\frac{1}{2}$×$\frac{8}{5}$×12.5)-$\frac{2}{3}$log23•2log32.
解答 解:(1)(2x${\;}^{\frac{1}{2}}$+3y${\;}^{-\frac{1}{4}}$)(2x${\;}^{\frac{1}{2}}$-3y${\;}^{-\frac{1}{4}}$)=$(2{x}^{\frac{1}{2}})^{2}$-$(3{y}^{-\frac{1}{4}})^{2}$=4x-9${y}^{-\frac{1}{2}}$;
(2)4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷(-6x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$)
=4×(-3)÷(-6)${x}^{\frac{1}{4}+\frac{1}{4}-(-\frac{1}{2})}$${y}^{-\frac{1}{3}-(-\frac{2}{3})}$
=2x$\root{3}{y}$;
(3)$\frac{lg240-1-\frac{1}{2}lg36}{1-lg36+lg\frac{36}{5}}$=$\frac{lg24+1-1-lg6}{1-lg36+lg36-lg5}$
=$\frac{lg4}{lg2}$=2;
(4)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log89•log34
=lg($\frac{1}{2}$×$\frac{8}{5}$×12.5)-$\frac{2}{3}$log23•2log32
=lg10-$\frac{4}{3}$=-$\frac{1}{3}$.
点评 本题考查了幂运算及对数运算,属于基础题.
A. | $\frac{5}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |