题目内容
【题目】某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:
注:尺寸数据在内的零件为合格品,频率作为概率.
(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;
(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;
(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?
【答案】(Ⅰ)分布列见解析,; (Ⅱ); (Ⅲ)选择方案.
【解析】
(Ⅰ)先根据直方图求出合格率,然后求出ξ的可能取值和相应的概率,作分布列,再利用随机变量的分布列进行求期望;
(Ⅱ)根据n件产品都合格的概率大于等于0.3,列不等式求解n的最大值;
(Ⅲ)根据期望求出A,B方案不合格的概率,即可选择.
(Ⅰ)由直方图可知,抽出产品为合格品的频率为,即抽出产品为合格品的概率为, 从产品中随机抽取件,合格品的个数的所有可能取值为且 ,,, ,, 所以的分布列为
故数学期望
(Ⅱ) 随机抽取件,全是合格品的概率为,依题意,故的最大值为.
(Ⅲ) 按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数;
按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数,
依题意,,解得,
因为,所以应选择方案.
【题目】某次考试中500名学生的物理(满分为150分)成绩服从正态分布,数学成绩的频率分布直方图如图所示.
(Ⅰ)如果成绩大于135分为特别优秀,那么本次考试中的物理、数学特别优秀的大约各有多少人?
(Ⅱ)如果物理和数学两科都特别优秀的共有4人,是否有99.9%的把握认为物理特别优秀的学生,数学也特别优秀?
附:①若,则
②表及公式:
0.50 | 0.40 | … | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
【题目】为推进“千村百镇计划”,2019年4月某新能源公司开展“电动绿色出行”活动,首批投放200台型新能源车到某地多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为100分).最后该公司共收回有效评分表600份,现从中随机抽取40份(其中男、女的评分表各20份)作为样本,经统计得到茎叶图:
(1)求40个样本数据的中位数;
(2)已知40个样本数据的平均数,记与的最大值为.该公司规定样本中试用者的“认定类型”:评分不小于的为“满意型”,评分小于的为“需改进型”.
①请以40个样本数据的频率分布来估计收回的600份评分表中,评分小于的份数;
②请根据40个样本数据,完成下面2×2列联表:
认定类型 性别 | 满意型 | 需改进型 | 合计 |
女性 | 20 | ||
男性 | 20 | ||
合计 | 40 |
根据2×2列联表判断能否有99%的把握认为“认定类型”与性别有关?
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |