题目内容
【题目】已知函数.
(Ⅰ)对任意的实数,恒有成立,求实数的取值范围;
(Ⅱ)在(Ⅰ)的条件下,当实数取最小值时,讨论函数在时的零点个数.
【答案】(Ⅰ);(Ⅱ)见解析.
【解析】
(Ⅰ)由可知,区间是不等式解集的子集,由此可得出实数的不等式,解出即可;
(Ⅱ)由题意可知,,则,令,可得出,令,对实数的取值范围进行分类讨论,先讨论方程的根的个数及根的范围,进而得出方程的根个数,由此可得出结论.
(Ⅰ),,
对任意的实数,恒有成立,
则区间是不等式解集的子集,,解得,
因此,实数的取值范围是;
(Ⅱ),由题意可知,,,
令,得,令,
则,作出函数和函数在时的图象如下图所示:
作出函数在时的图象如下图所示:
①当或时,即当或时,方程无实根,
此时,函数无零点;
②当时,即当时,方程的根为,
而方程在区间上有两个实根,此时,函数有两个零点;
③当时,即当时,方程有两根、,
且,,
方程在区间上有两个实根,方程在区间上有两个实根,此时,函数有四个零点;
④当时,即当时,方程有两根分别为、,
方程在区间上只有一个实根,方程在区间上有两个实根,此时,函数有三个零点;
⑤当时,即当时,方程只有一个实根,且,
方程在区间上有两个实根,此时,函数有两个零点;
⑥当时,即当时,方程只有一个实根,
方程在区间上只有一个实根,此时,函数只有一个零点.
综上所述,当或时,函数无零点;
当时,函数只有一个零点;
当或时,函数有两个零点;
当时,函数有三个零点;
当时,函数有四个零点.
练习册系列答案
相关题目