题目内容
已知函数
是一次函数,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229644588.png)
成等比数列,设
,(
)
(1)求Tn;
(2)设
,求数列
的前n项和
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229613447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229644588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229659776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229691614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229722531.png)
(1)求Tn;
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229925501.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229940540.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229971388.png)
(1)
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230143795.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230096367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230143795.png)
(1)因为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229644588.png)
成等比数列,可得
和![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230237943.png)
,从而可解出a,b的值,进而得到
,所以
,再根据等差数列的前n项和公式求和即可.
(2) 由于
,所以其前n项和易采用错位相减的方法求和.
解:(1)设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230502171.png)
,(
)由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229644588.png)
成等比数列得
,----------------①,
得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230237943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230330692.png)
∵
∴
---------------② 由①②得
, ∴
∴
,显然数列
是首项
公差
的等差数列
∴Tn=
(2)∵
∴
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232322312041014.png)
2
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232322312351370.png)
-
=
=
∴
=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229644588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229659776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230221588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230237943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230330692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230346595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230377565.png)
(2) 由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230486805.png)
解:(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230502171.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230517651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230705403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229644588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229659776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230221588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230798839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230237943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230330692.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230705403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230923478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230939541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230346595.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230377565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232231017456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232231048396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232231063416.png)
∴Tn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232322311261144.png)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230486805.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232231173888.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232322312041014.png)
2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229971388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232322312351370.png)
-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229971388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232322312971077.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232231313966.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232229971388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232230143795.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目